7 research outputs found

    Error Assumptions on Generalized STAR Model

    Get PDF
    For GSTAR models, the least squares estimation method is commonly used since errors are assumed be uncorrelated. However, this method is not appropriate when errors are correlated, either in time or spatially. For these cases, the generalized least squares (GLS) method can be applied. GLS is more powerful since it has an error parameter that can act as a controller of the model to produce an efficient estimator. In this study, R Software was used to estimate GSTAR parameters. The resulted model was applied to real data, i.e. the monthly tea production of five plantations in West Java, Indonesia. The best model for forecasting was the GSTAR(1;1) model with temporally correlated error assumption

    The Modified Double Sampling Coefficient of Variation Control Chart

    Get PDF
    The concept of monitoring the coefficient of variation has gained significant interest in quality control, particularly in situations where the mean and standard deviation of a process are not constant. This study modified the procedure of the previous double sampling chart for monitoring the coefficient of variation, developed by Ng et al. in 2018. Instead of using only information from the second sample, here, information from both samples is used. The probability properties of the out-of-control signal and run length of this chart are presented. To evaluate the chart’s performance, the optimal design and a comparison with the previous double sampling control chart using average run-length criteria are described. It was found that the modified double sampling chart has better performance and is more efficient compared to the previous chart, especially when the total sample size is smaller. As a study case, the application of this chart is illustrated using real data from a molding process. This confirmed that the modified double sampling chart improved performance in detecting out-of-control signals. Thus, the modified chart is recommended to be applied in industry

    Effective Router Assisted Congestion Control for SDN

    Get PDF
    Router Assisted Congestion Control (RACC) was designed to improve endto- end congestion control performance by using prior knowledge on network condition. However, the traditional Internet does not provide such information, which makes this approach is not feasible to deliver. Our paper addresses this network information deficiency issue by proposing a new congestion control method that works on the Software Defined Network (SDN) framework. We call this proposed method as PACEC (Path Associativity Centralized Congestion Control). In SDN, global view of the network information contains the network topology including link properties (i.e., type, capacity, power consumption, etc.). PACEC uses this information to determine the feedback signal, in order for the source to start sending data at a high rate and to quickly reach fair-share rate. The simulation shows that the efficiency and fairness of PACEC are better than Transmission Control Protocol (TCP) and Rate Control Protocol (RCP)

    Optimal Design of a Revised Double Sampling X Chart Based on Median Run Length

    Get PDF
    In process control, it is very important to have a tool that is able to detect small shifts of a process mean. The revised double samplin

    The Modified Double Sampling Coefficient of Variation Control Chart

    Get PDF
    The concept of monitoring the coefficient of variation has gained significant interest in quality control, particularly in situations where the mean and standard deviation of a process are not constant. This study modified the procedure of the previous double sampling chart for monitoring the coefficient of variation, developed by Ng et al. in 2018. Instead of using only information from the second sample, here, information from both samples is used. The probability properties of the out-of-control signal and run length of this chart are presented. To evaluate the chart’s performance, the optimal design and a comparison with the previous double sampling control chart using average run-length criteria are described. It was found that the modified double sampling chart has better performance and is more efficient compared to the previous chart, especially when the total sample size is smaller. As a study case, the application of this chart is illustrated using real data from a molding process. This confirmed that the modified double sampling chart improved performance in detecting out-of-control signals. Thus, the modified chart is recommended to be applied in industry

    A Two-dimensional Maintenance Service Contract Considering Availability and Maintenance Cost

    Get PDF
    In this paper, we study a two- dimensional Maintenance Service Contract (MSC) characterized by two limits (dimensions) of age and usage. It is considered that an agent offers a two-dimensional MSC by guaranteeing a certain level of equipment available to consumers. The agent needs to reduce the total maintenance cost to offer competitive MSC prices. Preventive maintenance actions (PM) are periodically carried out, and each PM action is considered to improve reliability modeled by reducing the failure rate function. Two decision variables (the PM interval (T) and the reduction in the intensity function  are obtained by considering two performance measures that are relevant to agents and consumers (i.e., availability and total maintenance cost). A numerical example is presented by considering three types of equipment usage rates: low, medium, and high. The optimization of the two performance measures can ensure availability targets and, at the same time, minimize total maintenance costs

    Infectious Disease Modeling with Socio-Viral Behavioral Aspects—Lessons Learned from the Spread of SARS-CoV-2 in a University

    No full text
    When it comes to understanding the spread of COVID-19, recent studies have shown that pathogens can be transmitted in two ways: direct contact and airborne pathogens. While the former is strongly related to the distancing behavior of people in society, the latter are associated with the length of the period in which the airborne pathogens remain active. Considering those facts, we constructed a compartmental model with a time-dependent transmission rate that incorporates the two sources of infection. This paper provides an analytical and numerical study of the model that validates trivial insights related to disease spread in a responsive society. As a case study, we applied the model to the COVID-19 spread data from a university environment, namely, the Institut Teknologi Bandung, Indonesia, during its early reopening stage, with a constant number of students. The results show a significant fit between the rendered model and the recorded cases of infections. The extrapolated trajectories indicate the resurgence of cases as students’ interaction distance approaches its natural level. The assessment of several strategies is undertaken in this study in order to assist with the school reopening process
    corecore